Until we get to the magic, let's proceed as we did in Calculus. As we do this we'll be
recalling facts and limit theorems/estimates from 3210-3220.

Theorem Let f be complex differentiable at zy € 4, A = C open. Then f is
continuous at z;.
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analytic on 4. And the quotient E is analytic in A4 intersect the complement of the

zero set for g. Furthermore, for z € 4,
(1) (cf)'(z)=cf (2)

(i) (f+g)'(2) =/ (2) +g'(2)

(i) (fg)'(2) =/ (2)g(z) + f(2)g' (z)

(iv) (é) '(2) = A (Z)g(l()g(;)j;(z)g’ (2)

where g(z) # 0.

The proofs are just like in Calc 1. We can verify the product rule or the quotient rule,
for example:
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Some more computations that go just like in Calculus:

(1) if f(z) is the constant function, its derivative is zero.

(i) if f(z) =2",n € N, then /' (z)=n2" !

(iii) if f(z)=2",n € Z, then [ (Z)an”_l

(iv) every polynomial in z is analytic on C, with the expected formula for its derivative.

(v) if f(z) = ‘Z E;; is a rational function, i.e. a quotient of two polynomials, then

f(z) is analytic on the complement of the zero set for ¢.

The chain rule is also true - we'll prove this on Friday or next week, along with a

discussion of the inverse function theorem. (The chain rule proof proceeds just like the
precise proof for the 1-variable real chain rule that you discussed in 3210). In any case,
if f is differentiable at z, and g is differentiable at f(z,) then g f is differentiable at

z,, and

(g°f) (20) =g (f(20))S (20)-
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Example 3: Write z=x+iy,y € R. Then|f(z) =Re(z) ):x is NOT complex>
differentiableyat any point of C ! (Even though the associated F': R“— R~ given by

————————

F(x,y) = (Ref, Im f) = (x, 0)
is Math 3220-differentiable, with differential (Jacobian) matrix

1 0

The way to check Example 3 at any point z, =x, + iy, is to evaluate the limits
{21 = Rel2 _ L ‘h
( ) Fla)= tim L2 ) if it ek, b/ h
o 27 z— z,

z— z, from the real and imaginary directions and see that these limits do not agree.
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In fact, being complex differentiable is very rare for a function f: 4 & C—C,

relatively speaking, even when Re( /) and Im( f) are nice real-differentiable functions
of x and y

Theorem Let 4 < C open, f:4—C, z, € A. Write

f2)=f(x +iy)=u(x,y) + iv(x,y), whereu(x, y)=Re(f(x+iy),v(x,y)=Im
(f(x+iy). Then if fis complex differentiable at z, =x, + iy, the following

partial derivative equalities - known as the Cauchy-Riemann equations - must hold
there:
N
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l—.(The converse statement 1s almost true. The precise fact, which we'll dlscuss on Erday,
isthatif F: 4 € R2—>R2, F(x, y) = (u(x, y), v(x, y)) is Real dllZerentzable at

(X0> Vo) as you discussed in Math 3220, and if the CR equations hold at (xy, vy ), then
\f(x +iy)=u(x,y) +iv(x, ins complex differentiable at zy=x, + iy,. Thisis
Theorem 1.5.8 in the text, which calls it the "Cauchy-Riemann Theorem".

Geometrically, the CR Equations are saying that the differential map of F' is given by a
gotation-dilation matrix.)
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Name: So lw-’m'mN,(
Math 4200 Quiz week 2 September 2, 2020

la) For we C \ {0} express
w=|w| gl arg(w)
where we choose
- < arg(w) < .

With this choice of argument we can define a branch of the square root function,
1 1

i—argw

Vv =lwle ?

Sketch the image of C \ {0} via this particul]hr square root function.

) (5 points)
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Math 4200-001
Week 2 concepts and homework
1.5
Due Wednesday-September 9 at 5:00 p.m.
o Sot Il @ 5:0D pann.
1.5 lad, 3b, 5c, 6¢ (in 5c and 6¢ desefibe the differential map as a rotation-dilation); 8,
9,10, 11, 16, 18abc, 19.

w2.1a) Consider f(z) = % and z, = % Illustrate the rotation-dilation differential

map for f at z, using rectangular coordinates. Precisely, Sketch a domain picture
containing the point z, along with real and imaginary coordinate segments through that

point having unit tangent vectors 1 and i. Sketch a range picture containing f(1 + i),
the images of the coordinate segments with the corresponding image tangent vectors
based at f(z;) - which should be rotated and dilated according to the argument and
absolute value of /" (z).

w2.1b) Repeat part (a), except using polar form. In other words, for

~ 1 T . :
f (r e e), = ——,9,= ik sketch » and 0 coordinate segments through z, and their
V2
tangent vectors. In the range picture sketch the images of these coordinate segments and
the corresponding rotated and dilated image tangent vectors.

In the problem above you are creating concrete realizations of the schematic pictures
Figures 1.5.1 and 1.5.2 in the text.



Math 4200
Friday September 4

1.5 continued: The Cauchy-Riemann equations, chain rules, and the differential map

Announcements We'll talk about the Cauchy Riemann equations and Theorem in
Wednesday's notes, and then discuss the chain rule and the differential map in today's
notes. We'll briefly discuss the local inverse function theorem as well, leaving the in
depth proofs of the Cauchy Riemann Theorem and local inverse function theorem until
Wednesday next week. Each depends on key results from Math 3220, which we will
state and articulate carefully to the present context. (The text omits both proofs.)
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Our general discussion today will use the affine approximation characterization of
complex differentiability. It is analogous to discussions you had in Math 3210-3220
when you discussed the "differential" or "differential matrix". 2 = 2, ¥~

5(0\_\‘ (D)~ 4G, :l\‘w 7‘(“{\) ~Hz)

22,
Lemma: /" (z)) exists and has Value ¢ if and only if we have the affme approx1mat10n

_

formula with error estimate:

@ f(zo+h)=f(zo)+=ch+he(h)
where €(h) —0 as h— 0.
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Chain rules addh F() b Lot <L )
1) Theorem (Chain rule for composition of analytic functions): If f is differentiable
at zy and g is differentiable at f(z,) then g f is differentiable at z, and i A
/N /—\
(g°/)"(20) =8 (f(20)) /" (%) €L Cn &
<7 £
proof: We use the affine approximation formula for g at f/(z): ()

® Flzo+ )Y =g(f(20))F 2 (F(z0)) (f(z0 + E) —f(20)) + k £(k) is bl

. g(/ (= )lkg( (%)) F &'( (0))(\(_0/_\)(4_9)) S@H%ﬂ
k=f(zo—|-h) —f(ZO)

rewrite, divide by 4:

. g(f(zo+h)21—g(f(zo)) =g’(f(Zo))f(ZO+h21_f(Zo) (M

. k
© Take limits as #— 0 and note that the last term — 0 begause L S (20) and L

€(k)—0, since k— 0 by the continuity of f. 5 1o Mty
(g°/)"(20) =" (f (%)) (20)-
QED




2) Theorem (Chain rule for curves) If f is differentiable at zy and y:/ S R—C isa
parametric curve Y(#) =x(¢) + i y(¢) such that y(#,) =z, and such that

Y (to) =x" (%) +iy'(f)exists, then

(o) () =1 (¥(%) )¥' (o)

%___ol__/')

proof We can use the affine approximation formula for f, at y(¢), and mimic the
proof of Theorem 1. ¥
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Domain-range-geometry tmpticd by the chain rule for curves. Consider the curve y(¢)
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which has image in the domain of f, along with the curve f° y(z) which has image in

' 0 . .
the range of f. Let f (y( o) ) =re . Then the image curve tangent vector is

obtained by rotating the original curve tangent vector by r and scaling it by 0.
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Conformal transformations and differential map discussion:

(1) The precise definition of the fangent space at z, € C is the set of all tangent

vectors there, i.e. tangent vectors to curves passing through z,:
TZOC = {y' (%) ‘ Y is differentiable at 7, and (7 ) :ZO}

(i1) If f(z) is a function from C to C that arises from a real-differentiable function
F:A € R?—>R?, then the differential of f at z, is defined by

dr. (1'(10)) = (/27)" (10)-
df, :T, C—T, C.
fzo “0 /(%)
(ii1) By the chain rule for curves, if f(z) is complex differentiable at z,, then

dfzo(Y'(fO)) = ()" (o) =1 (20)¥' (%)

Geometrically, this means that for complex differentiable functions f, the differential

map is a linear transformation from 7 C to T’ P - )(D which is a rotation-dilation.
0 0

i)

15 (8k) = Fo¥'18,)
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(iv) A function f: C— C is called conformal at z, iff its differential transformation

preserves angles between tangent vectors. Since rotation-dilations have this property, a
function f* which is complex differentiable at z,, and for which /" (z,) # 0, is

conformal at z, . (It turns out that if f is conformal at z, and also preserves

orientations of pairs of tangent vectors, then f is complex differentiable at z.)



Illustration. Consider

f(z) :ZZ, zy=1+1,

f(z) =20 f'(zo)=2+zi=3i7£

Below, are parts of a rectangular coordinate grid in the domain, and the image of that
grid in the range space.

a) Why are the images of the real and imaginary grid lines also perpendicular?
b) Find the formula for the differential map
d :T C—-T C
o % /(%) Limish do ‘
and illustrate the rotation dilation. msh da'Scnssn—
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There is a local inverse function for analytic functions which we will prove on
Wednesday next week using the local multivariable inverse function theorem you
learned in Math 3220. I want to state it here, because it comes up in one of your
homework problems for Wednesday. (You will only need to know the statement of the
theorem, not its proof, for that problem.)

Theorem (Inverse function theorem) Let f be complex differentiable in a
neighborhood of z,, with f” (z;) # 0 and f” (z) continuous. Then there exist open sets

U,V withzy € U, f(z5) € V such that f: U—V is a bijection and f_1 V—=Uis
also analytic. Furthermore

Vze U.



